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Salamanca, Spain 
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Abstract. In this paper a complete PainlevC test is applied to the generalized Burgers- 
Huxley equation using the version of the Painlevt analysis recently developed by Weiss, 
Tabor and Carnevale for partial nonlinear differential equations. In so doing, we are able 
to find a complete set of new solutions as well as recovering some previous particular 
solutions already found by using ad hoc methods which have been recently published. 

1. Introduction 

Almost any branch of physics is nowadays unavoidably associated with problems 
involving nonlinear differential equations which logically need to be integrated. These 
differential equations can be either partial differential equations ( PDE) or ordinary 
differential equations (ODE), the latter sometimes arising as a special reduction of the 
former. In either of these cases the available tools one has for determining whether 
these differential equations are integrable or not are group theory and PainlevC tests. 
In the first case one looks for groups leaving the equations invariant and this avenue 
leads to the study of infinite-dimensional Lie algebras, Kac-Moody algebras and the 
like. In the second case one is led to analyse the analytical behaviour in the complex 
plane of the singularities of the solution manifold giving rise to important achievements 
such as Backlund transformations, integrability tests and finally explicit solutions. 

In this paper we fully apply the heavy artillery of the PainlevC analysis [l-51 to 
the generalized Burgers-Huxley equation. We do this for two reasons. First because 
this equation has several interesting limiting cases which have already been studied. 
We will be talking about these limits below. The second reason is that a recent paper 
has appeared [6] in which a very limited set of solutions of this equation is presented 
without any systematical analysis. We shall show that using the full-power PainlevC 
analysis those solutions appear as particular cases of the very general solutions here 
presented. This shows again that in dealing with solutions either of PDE or ODE, one 
needs to use a systematic method providing a full insight into the corresponding 
nonlinear problem since particular clever tricks only increase the number of papers 
but not the desirable knowledge of the physical system associated with such nonlinear 
evolution equations. 

The generalized Burgers-Huxley equation is a diffusion equation which has the 
form [ 6 ]  
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where CY, p, y and m are constant parameters. The case m = 1 contains several known 
evolution equations: 

( a )  when p = O  is the Burgers equation [5]; 
( b )  when a = 0 is the Huxley equation, sometimes known as the FitzHugh-Nagumo 

equation [7]; 
(c )  when a = 0 and y = - 1 is a particular case of the above, known as the Newell- 

Whitehead equation [8]. 
Our aim in this paper is to apply the PainlevC analysis to equation (1). However, 

we have to use the modified version of the PainlevC analysis developed and thoroughly 
used by Weiss et a1 [ 51 and suitably adapted to the PDE case. The reader is also referred 
to [9,10] for a complete set of references on the subject. 

Even in those cases in which no integrability is found we can find particular 
solutions by imposing truncation in the PainlevC series according to the procedure 
developed by Cariello and Tabor [8]. We shall find in this way solutions of (1) that 
will contain as particular cases those found in [6-81. 

The plan of this paper is the following. In section 2 we revise the necessary basics 
of the Weiss-Tabor-Carnevale method: PainlevC analysis applied to PDE. We also 
apply it to equation (1) and discuss its integrability. In section 3 we use the truncation 
method for finding particular solutions which we also classify according to a systematic 
method. A comparison is made with other results obtained from our more general 
solutions as particular cases. We close with some conclusions and comments on the 
solitonic nature of our solutions. 

2. The Weiss-Tabor-Carnevale method applied to the generalized Burgers-Huxley 
equation 

Let us write equation (1) in the form 

m - 1  
m 

uu, - uu,, + - u 2 , + C Y u 2 u , + p m u 2 ( u - l ) ( u - y ) = 0  

which can be obtained from (1) through the obvious transformation U = w". In order 
to obviate bad singularities at U = 0 (the coefficient of U,.,.) we will be restricted to the 
cases with m integer [ 113. A given PDE is said to have the Painlevi property when its 
solutions are single valued about the movable singularity manifolds. A movable 
singularity is a singularity which depends upon the initial conditions. The PainlevC 
test as it was formulated in [2] established that whenever a PDE is solvable through 
the inverse scattering method, the associated ODE obtained as a similarity reduction 
of the PDE [IO] is of PainlevC type: the only movable singularities are poles. 

Later on, a method specially designed for PDE without relying on the associated 
ODE (nor the inverse scattering method) was put forward by Weiss et a1 [ 5 ] .  It is this 
method which will be applied to our equation ( 2 ) .  To begin with let us express the 
solutions of (2) in the form 

cc 

u ( x ,  t )=9 '  Uj9 '  
j = O  

( 3 )  

where d(x, t )  = 0 is the singularity manifold of the equation while the uj are functions 
of x and t ,  analytic about a neighbour of this manifold. 
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The leading index r as well as the recurrence relations among the uj are easily 
obtained by inserting (3) into ( 2 ) .  The result is that the leading index is r = - 1  and 
the recurrence relations are 

j 

n =o 
C [ u n  ( uj - n -2)  t + ( n - 1 1 4rUnUj - n - 1  - uj - n -2( u n  xx - 2( n - 1 1 4xuj- n - 1 ( u n  )x  

- ( n  - l)4xxunuj-n-, - ( n  - 1)( n - 2 ) 4 2 , U , U j - , ]  

In particular, for j = 0, 

u O =  -A4x 
where A is a constant verifying 

pm2A2+ amA - ( m +  1) =O.  

The uj coefficient for j > 0 in (4) is 

Therefore, the equation presents a resonance when the following relation holds: 

2 ( l + m )  
m 

cuA = k -- 

where k is a positive integer. In this case u k  is an arbitrary function and for the equation 
to be integrable one needs that the correspondent j = k term in (4) verifies the relation- 
ship identically. We have checked by substitution in (4) that for k = 1 in (8) the 
resonance condition is verified and the equation is totally integrable. For k = 2 , 3  the 
resonance condition is not verified and the equation is not totally integrable. In 
particular the case k = 1 will be thoroughly analysed in the last part of the next section 
in which the truncation method will be applied. 

3. Truncation method and particular solutions 

Recently it was observed by Cariello and Tabor [8] that a procedure for obtaining 
particular solutions of a non-integrable PDE can always be found by looking for the 
particular solutions of the equation such that the resonance condition is verified by 
imposing the necessary conditions for the truncation of the expansion. In our case, 
we note that the only way to obtain a finite recursion expansion in (4) is u1 = u2 = 0. 
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In this case all terms withj  > 2 of the expansion vanish and the resonance condition, 
if it exists, will also be satisfied since all terms appearing in it are zero. If such a 
condition is actually imposed we are led to a function U satisfying: 

U = - A ( 4 x / 4 )  
P = ( 4 , / 4 x )  
9 = ( 4 x x / 4 x )  

where p and q verify the equations 

m + 2  *=(m- ah ) q + p m A ( y + l )  

2-ahm 

The equation ( lob)  has three different types of solutions which in turn will result 
in three different types of solutions for 4 through the integration of (9a, b) .  

Case 1. 

1 
(11) = -7 

In this case 4 = A( t )  - A  exp{-( l /A)(x +g(  t ) ) }  and imposing (9b) we obtain 
dA _- - 0  
dt  

*=pmyA - ( m h ) - '  
d t  

and then we obtain for u ( x ,  t )  

u ( x , t ) =  1 S B e x p  - (x-c t )  [ I: 11-' 
c = ( m h ) - *  - pmyA 

where B is an arbitrary constant. 

Case 2. 

Y 
= -7. 

In a similar manner we obtain for 4 

and imposing (96) we find 
dA 

0 -= 
dt  
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and then we obtain for u(x, t )  

(19a) 

again B is an arbitrary constant. 
The solutions (14a, b) and (19a, b) are the travelling-wave solutions obtained in 

[ 6 ] .  Also a = 0 and m = 1 correspond to two of the solutions of the FitzHugh-Nagumo 
equation described in [7]. 

Case 3. 

where 

a = (pm2A)(2-amA)-’. (21) 

(22a) 

For the general conditions (9a-c) and (loa, b) we obtain 

m + 2  
d t  

From the last condition we see that 

( 2 2 4  

solutions would only exist if m = 1 or A = 
( m  + 2)/( ma). We shall investigate these two cases separately. 

Case 3a. Using (22a-c) with m = 1 and (9a-c) one easily finds: 

(230) 
exp{ -( y /  A )(x - ct + x,)} - exp{ -( l/A)(x - ct + x,)} 

- y  exp{-(l/A)(x-ct+x,)} 
B exp{( y/A2)(2 - ha)?}  + exp{-( y/A)(x - ct + x,)} 

and 

The limits xo + 03, xo+ -03 and B + 0 for a = 0 yield the three travelling-wave 
solutions of the FitzHugh-Nagumo equation described in [7] with different wave 
velocities to those mentioned in cases 1 and 2. Also the case a = O  and y = -1 
corresponds to the Newell-Whitehead equation whose solutions have been extensively 
described by Cariello and Tabor [8]. In these limits (23) trivially yields: 

sinh[2-”’(x + x,)] 
c0sh[2-’’~(x+ xo)]+ 2 8  e-31’2 

u ( x ,  t )  = 

which is indeed the same as the one obtained in [8]. 
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Case 36. Let us now take A = ( m  +2) / (ma) .  From equations (6) and (21) we find the 
following relation among the parameters: 

(25) 

We would like to point out at this stage that in this case the expansion (4) shows 
a resonance in j = 1 and in addition the resonance condition is identically satisfied. 
Thus, when the parameters of equation (2) satisfy (25) we have a totally integrable 
equation with a resonance in j = 1. Therefore the function U ,  is arbitrary and when we 
choose U, = 0 the obtained solution will correspond to the most general solution 
obtained as a truncated expansion. Using (22a-c) and (9a-c) together with (25) we 
obtain after lengthy calculation the solution for u(x, t ) :  

1 
m 

~ ( m + 2 ) ~ = - a ~  and ah =-. 

S , ( X  - ct + xg) 
S2(x - ct + xg) 

u(x, t )  = 

where, if z = x - ct + xo, SI( z) and S2( z )  can be written as: 

and c = a (1 + y ) / (  m + 2). Indeed B in an arbitrary constant. 

4. Conclusions and comments 

Aside from the solutions obtained in cases 1 and 2, which have already been found 
by other authors, case 3 presents a totally new set of solutions. Special cases of case 
3a have been the subject of previous contributions. The solution in case 3b is totally 
new. At any rate, it is important to point out that all these solutions represent a sort 
of generalized asymmetric kink. More precisely, solution (26) and (27a, b )  behaves at 
x + f m  as 

u(x, X - r t 3 3  t )+z[ l - tanh(&z)]  2 

which are the solutions (14a, b )  and (19a, b) .  Then, our solution (26) and (27a, b )  
interpolates between previous known solutions much as it happens in other cases [8]. 
Whether or not our solution represents a multikink solution remains to be seen by 
performing numerical asymptotic calculations which will be reported elsewhere. 
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